

Gelsenkirchen Bocholt Recklinghausen University of Applied Sciences

BlockChain-Technologie→ Sicherheit und Anwendungen

Prof. Dr. (TU NN)

Norbert Pohlmann

Institut für Internet-Sicherheit – if(is) Westfälische Hochschule, Gelsenkirchen http://www.internet-sicherheit.de

BlockChain-Technologie

→ Inhalt

■ Übersicht (Sichtweisen, Sicherheitseigenschaften, ...)

 Anwendungssicherheit (Schlüsselspeicherung, Manipulation, ...)

Blockchain Beispielanwendungen
 (Bitcoin, Smart Contracts, automatisierte Zusammenarbeit, ...)

 Zusammenfassung (Chancen und Risiken)

BlockChain-Technologie

internet-sicherheit.

→ Inhalt

Übersicht

(Sichtweisen, Sicherheitseigenschaften, ...)

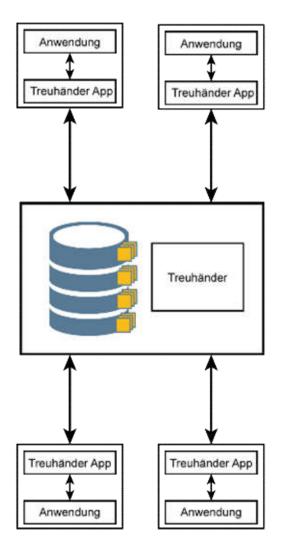
Anwendungssicherheit

(Schlüsselspeicherung, Manipulation, ...)

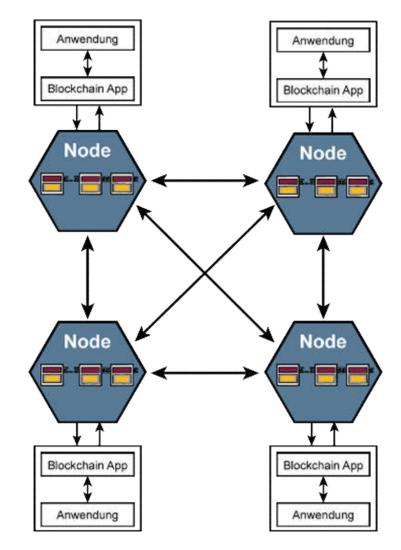
Blockchain Beispielanwendungen

(Bitcoin, Smart Contracts, automatisierte Zusammenarbeit, ...)

Zusammenfassung


(Chancen und Risiken)

Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen


BlockChain-Technologie → auf den Punkt gebracht

Transaktionsspeicher

Zentrale Architektur

Dezentrale Architektur

BlockChain-Technologie→ Das "Internet der Werte"

- BlockChain-Technologie
 - Lassen sich Eigentumsverhältnisse (digital Assets)
 - direkter und effizienter als bislang sichern und regeln,
 - da eine lückenlose und unveränderliche Datenaufzeichnung hierfür die Grundlage schafft.
 - Alle **Beglaubigungsprozesse** werden *schneller*, sicherer und *billiger*.

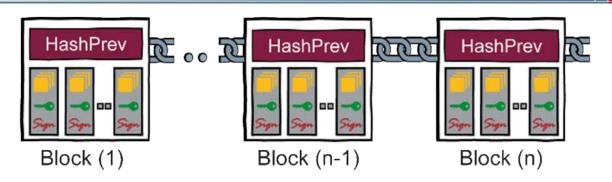
BlockChain → "Internet der Werte"

BlockChain-Technology

→ Sicherheitseigenschaften

BlockChain

- ist eine fälschungssichere,
- verteilte, redundante Datenstruktur
- in der Transaktionen in der Zeitfolge protokolliert
- nachvollziehbar, unveränderlich und
- ohne zentrale Instanz abgebildet sind.

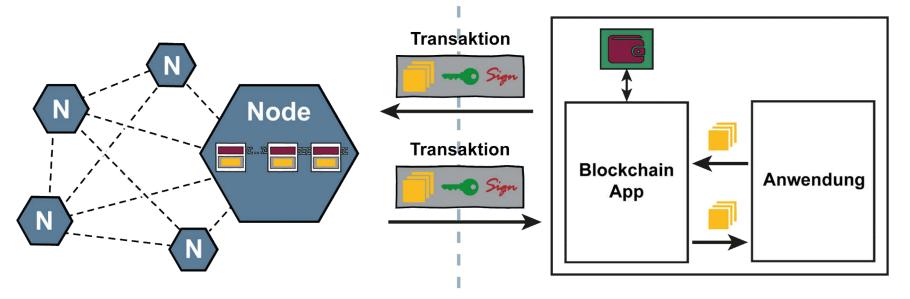


BlockChain-Technology

→ Datenstruktur einer BlockChain

Node

- Die Daten sind Transaktionsdaten mit Geldeinheiten, Zertifikaten,
 Produktionsdaten, Sensordaten, Source Code, ... digitale Werte
- Transaktionen mit Daten werden vom Teilnehmer erstellt und signiert (Wallet/Schlüssel). Passende Public Key in der Transaktion. Verteilung
- **Block** beinhaltet verknüpfte Transaktionen. Der Hashwert **HashPrev** sichert die Blockverkettung. Verteilte Validierung, Konsens.
- Die BlockChain beinhaltet alle Blöcke (Daten).
 Auf jeder Node eines bestimmten
 Peer-to-Peer Netzwerkes ist eine Version der BlockChain gespeichert

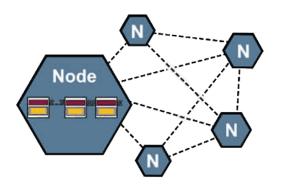

BlockChain-Technologie

→ Infrastruktur und Anwendung

BlockChain-Infrastruktur

BlockChain-Anwendungen

- Die BlockChain-Infrastruktur
 (Peer-to-Peer-Netzwerk, Nodes mit allen Kommunikations-, Sicherheits- und Vertrauensfunktionen, die BlockChain als Datenstruktur, ...)
- Die BlockChain-Anwendungen (Blockchain-App, Wallet/Schlüssel, eigentliche Anwendung, ...)
 - Die **Transaktionen** als Schnittstelle dazwischen


Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

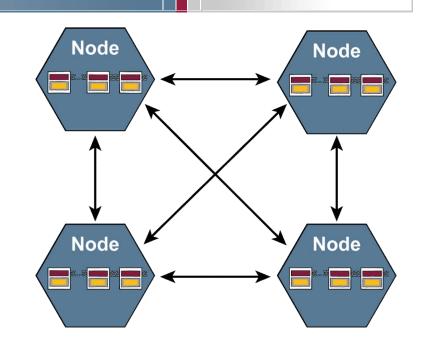
BlockChain-Infrastruktur→ Funktionen in einer Node

P2P-Funktionen Validierung Konsensfindung Kryptographie **Sonstige** Proof-of-Work Suchfunktion Hashfunktionen **BlockChain** Signaturen in (lookup) den Mining Transaktionen Public-Key-Verteilungs-Verfahren funktion Syntax und Proof-of-Stake Semantik der Sicherheits-Daten Weitere Modul für Konsens-Schlüssel Validierung der verfahren Hashwerte Evtl. Vereines neuen Erstellung schlüsselung Blocks eines neuen **Blocks**

Node

BlockChain-Infrastruktur

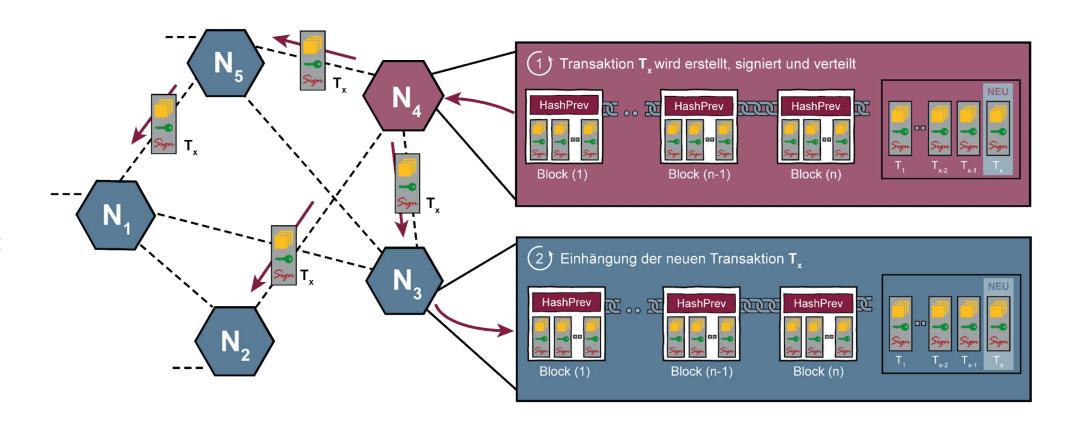
→ Eigenschaften: verteilt und redundant



Robustes Peer-to-Peer-Netzwerk

Skalierbarkeit / Ressourcenbedarf

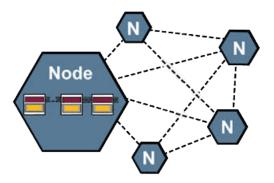
- Bandbreite zwischen den Nodes
- Speicherplatzkapazität auf der Node (Bitcoin BlockChain hat eine Größe von 160 G Byte)
- Rechnerkapazität (CPU, RAM, ...) einer Node


Zuverlässigkeit / Verfügbarkeit

- Anzahl der Nodes
- Robust für die Verteilung von Transaktionen und neue Blöcke
- Robust gegen DDoS-Angriffe
-

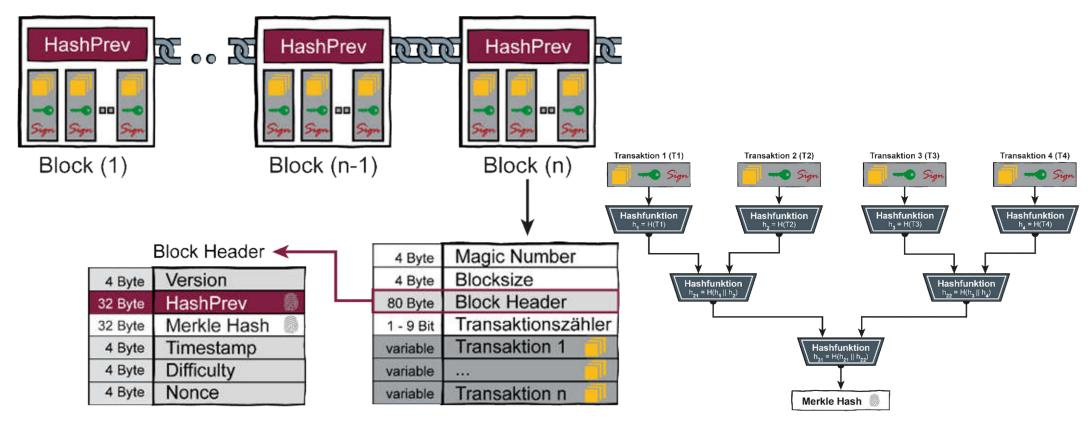
© Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

BlockChain-Infrastruktur→ Versendung von Transaktionen


BlockChain-Infrastruktur

Kryptographie-Agilität

- Stand der Technik (Technische Richtlinie: "Kryptographische Verfahren: Empfehlungen und Schlüssellängen")
 - Public-Key-Verfahren (Signierung / Verifizierung von Transaktionen)
 → (RSA 3.000 bit)
 - Hashfunktionen (Adresserzeugung, HashPrev, Merkle Hash)
 → (SHA-3 256 bit)
- Risiko Quantencomputing → Post-Quantum-Kryptoverfahren
- Lebensdauer der BlockChain / Kryptographie
 - Wechseln von kryptographischen Verfahren (z.B. alle 10 Jahre Organisation eines Hard Fork)


Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

BlockChain-Infrastruktur

Clevere Nutzung von Hashfunktionen

 $HashPrev_n = H (Block-Header_{n-1})$

BlockChain-Infrastruktur

→ Eigenschaft: ohne zentrale Instanz

- Die BlockChain-Technologie bietet "programmiertes Vertrauen" mit Hilfe verschiedener IT-Sicherheits- und Vertrauensmechanismen.
- Alle IT-Sicherheits- und Vertrauensfunktionen sind inhärent als "Security-by-Design" in die BlockChain-Technologie integriert.

Vertrauenswürdigkeitsmechanismen

- Verteilte Konsensfindungsverfahren
 - Gewinnen einer Krypto-Aufgabe (Proof-of-Work)
 - Wichtig für die BlockChain (Proof-of-Stake)

Node Node Node

Verteilte Validierung

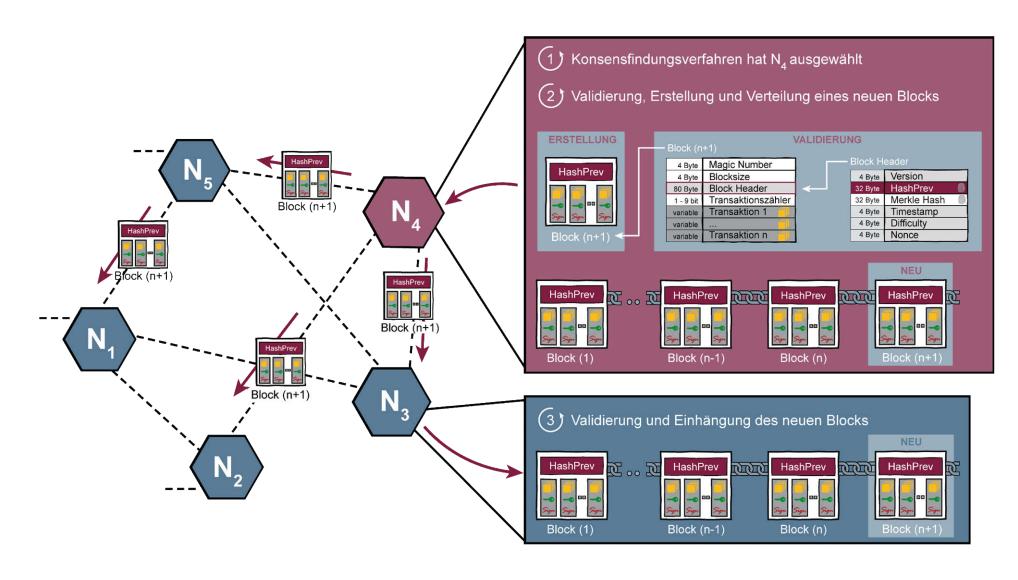
- Echtheit der Transaktionen (Überprüfung der Hashwerte/Signatur)
- Korrektheit der Blöcke (Überprüfung der Hashwerte/Konsens)
- Syntax, Semantik, ... (Schutz gegen Fremdnutzung)

Berechtigungsarchitektur

- Zugriff, Validierung, ...
- privat, öffentlich, ...

Prof. Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

BlockChain-Infrastruktur→ Berechtigungsarchitektur



		Validierung	
		Permissionless	Permissioned
Zugriff	Public	"Jeder darf lesen und validieren"	"Jeder darf lesen, nur Berechtigte validieren"
	Private	Nur Berechtigte dürfen lesen und jeder darf validieren"	"Nur Berechtigte dürfen lesen und validieren"

Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

BlockChain-Infrastruktur → Validierung von neuen Blöcken

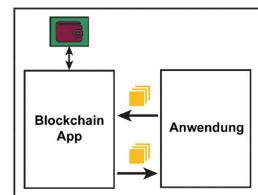
BlockChain-Technologie

→ Inhalt

■ Übersicht (Sichtweisen, Sicherheitseigenschaften, ...)

- Anwendungssicherheit (Schlüsselspeicherung, Manipulation, ...)
- Blockchain Beispielanwendungen
 (Bitcoin, Smart Contracts, automatisierte Zusammenarbeit, ...)
- Zusammenfassung (Chancen und Risiken)

BlockChain-Anwendungssicherheit→ Übersicht Anwendung



Blockchain-App

- Daten von der Anwendung werden in Transaktionen vom BlockChain-Teilnehmer (Wallet-Besitzer) signiert und in der BlockChain verstetigt
- Transaktionen werden verifiziert und die Daten von der Anwendung "verarbeitet"

Wallet

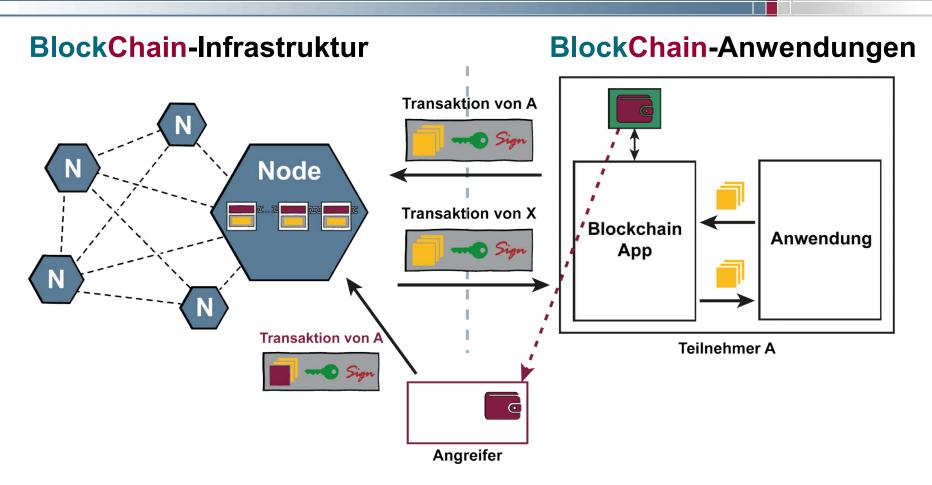
 Hardware-Sicherheitsmodule (USB-, NFC-Token, ...) in denen die Schlüssel sicher gespeichert sind

Teilnehmer

Anwendung

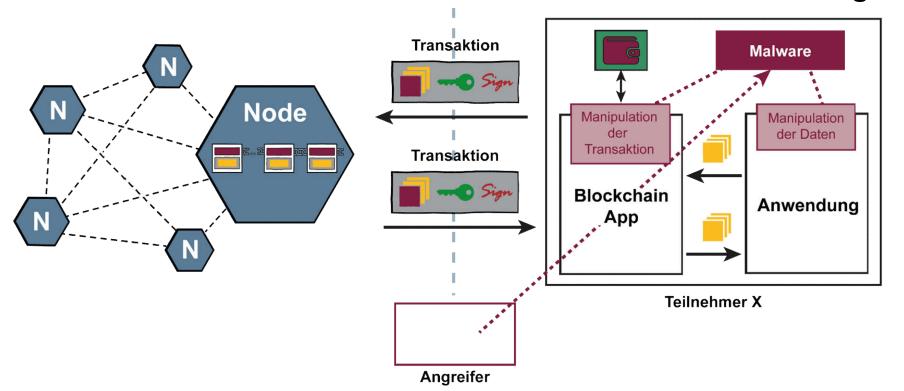
Die eigentliche Anwendung nutzt die BlockChain-Technologie

 Die Sicherheit der BlockChain-Technologie hängt auch von der Geheimhaltung der privaten Schlüssel der Public-Key-Verfahren ab (Wallet).



- Der private Rechner / IoT-Gerät wird gehackt (Malware)
- Die Website der Online Wallet (Service Node) wird gehackt
- Ein nicht ausreichend gesichertes **Smartphone** wird **gestohlen** (Light N.)
- Der private Schlüssel wird gestohlen oder unberechtigt genutzt
- Der Schutz des privaten Schlüssels sollte mit Hilfe von Hardware-Security-Module realisiert werden (Smartcards, Sec-Token, High-Level-Sicherheitsmodule) und unberechtigte Nutzung muss aktiv verhindert werden!

BlockChain-Anwendungssicherheit→ Manipulationen der Transaktionen


- Der Angreifer "besitzt" die Wallet/Schlüssel oder kann sie "unberechtigt nutzen"
 - Damit kann er valide Transaktionen für den entsprechenden
 Teilnehmer A erstellen und die BlockChain-Anwendung manipulieren

BlockChain-Anwendungssicherheit → Manipulationen der Daten

BlockChain-Infrastruktur

BlockChain-Anwendungen

- Der Angreifer "betreibt" auf dem IT-System des Teilnehmers X eine Malware
 - Damit kann der Angreifer die Daten der BlockChain-Anwendung manipulieren
 - Sowohl ausgehende und eingehende Transaktionen
 - Die Transaktionen sind im BlockChain sicher gespeichert

BlockChain-Anwendungssicherheit → Vertrauenswürdig Laufzeitumgebung

- Wie kann die Wallet angemessen geschützt werden?
 - Hardwaresicherheitsmodul
 - Verhinderung der unberechtigten Nutzung (sichere Aktivierung)
 - **...**
- Wie kann ein Malware-Angriff verhindert werden?
 - Trusted Computing
 - Trusted Execution Environment
 - Sandboxing
 - **.** . . .

BlockChain-Technologie

→ Inhalt

- Übersicht (Sichtweisen, Sicherheitseigenschaften, ...)
- Anwendungssicherheit (Schlüsselspeicherung, Manipulation, ...)
- Blockchain Beispielanwendungen
 (Bitcoin, Smart Contracts, automatisierte Zusammenarbeit, ...)
- Zusammenfassung (Chancen und Risiken)

BlockChain Anwendungen

→ Krypto-Währung: Bitcoin

Idee:

 Bitcoin ist eine Internetwährung, die verteilt, dezentral und unabhängig von einer Zentralbank ein globales Zahlungsnetzwerk zur Verfügung stellt.

Verfahren:

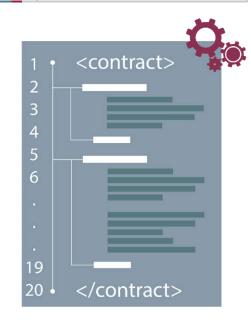
- Die Funktionsweise des Bitcoin-Systems stellt sicher, dass es in ein paar Jahrzehnten maximal 21.000.000 Bitcoins weltweit geben wird.
 - → Die Node, die beim Mining gewonnen hat, bekommt 12,5 Bitcoins als Belohnung – Stand 2018 (ca. 80.000 Euro, alle 10 Min.)
- Jede Person hat eine Wallet und der Public-Key entspricht der Kontonummer. Mit dem Private-Key werden Transaktionen signiert, um Guthaben auf diesem Bitcoin-Konto an eine andere Adresse zu überweisen (public permissionless Blockchain).

Herausforderungen:

 Gesetzliche Grundlage, schwankender Kurs (Zahlungssystem), globale Souveränität, ...

BlockChain Anwendungen

→ Smart Contracts



Idee:

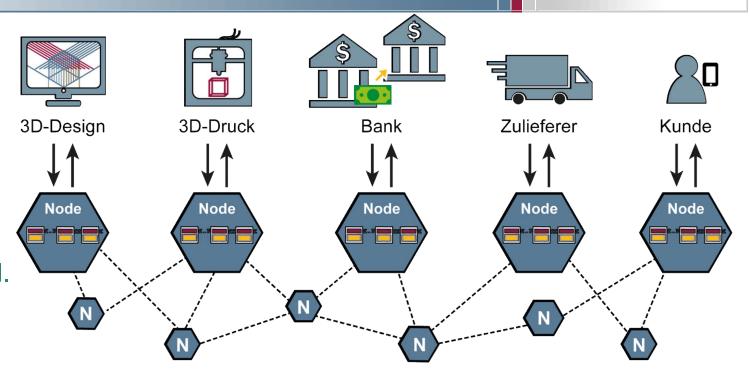
Automatische Umsetzung von Verträgen.

Verfahren:

 Programmierbare Verträge werden durch einen Quelltext (ausführbarer Programmcode) definiert und bei zuvor festgelegten Bedingungen automatisch auf BlockChain ausgeführt.

 Smart Contracts stellen eine Kontroll- oder Geschäftsregel innerhalb eines technischen Protokolls dar.

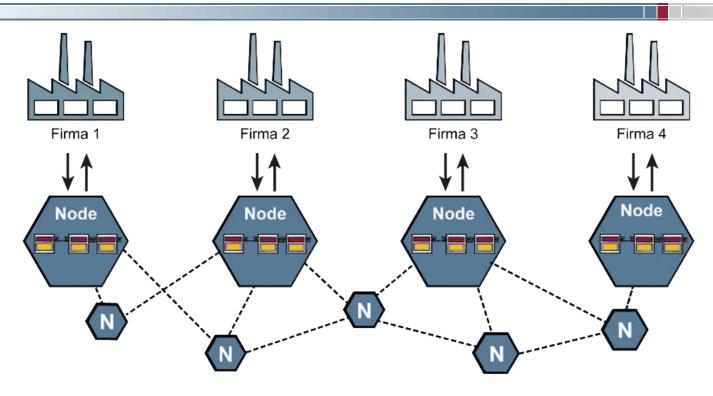
Beispiel:


- Ein geleastes Auto startet nur, wenn die Leasingrate eingegangen ist.
- Eine entsprechende Anfrage des Autos an die BlockChain würde genügen.

BlockChain Anwendung

→ Auto. Produktions-, Bezahl- u. Lieferkette

Kunde bestellt
Tasse und Lieferung,
zahlt sofort
mit der Bedingung,
das innerhalb
von 7 Tagen geliefert wird.



Automatischer Ablauf

- Kunde: Bestellung → BlockChain
- Design-Firma: 3D-Design (one time use only) → BlockChain
- Drucker-Firma: Tasse wird als 3D-Druck gedruckt ... Info → BlockChain
- Versanddienst: Transportiert Tasse, Bestätigung → BlockChain
- Bank: Transferiert die Gelder entsprechend ... Info → BlockChain
- automatisch abgelaufen u. in der Blockchain vertrauenswürdig protokolliert

BlockChain Anwendung → Lieferkette, Austausch, ...

Automatisierte und vertrauenswürdige Zusammenarbeit

- Bestellungen für Produktion und Wartung
- Sensordaten für viele Anwendungen
- Automatisierte und vertrauenswürdige Zusammenarbeit mehrere Maschinen

. . . .

BlockChain Anwendungen

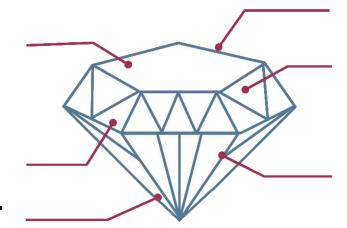
→ Manipulationssicherheit von Tachometern

Idee:

 Das Manipulieren von Tachometern bei Autos erkennen und Schaden daraus verhindern.

Verfahren:

- Wird ein Auto gestartet, wird eine Transaktion vom Auto (mit Kennzeichen – Motornummer, ...) mit dem Kilometerstand an die "BlockChain"gesendet und dort unveränderlich in der richtigen Zeitfolge protokolliert.
- So kann über die Zeit die Transaktion auf Plausibilität überprüft werden.
- Eine Manipulation, z.B. durch das Rücksetzen des Kilometerstands wird dadurch erkennbar und verhindert einen Schaden für den Käufer.


BlockChain Anwendungen

→ Diamantenhandel

Idee:

- Fälschungen von Diamanten aufdecken
- Betrüger von Diamanten entlarven

- Alle Diamanten werden "zertifiziert" (beglaubigt).
 - Was für eine Qualität des Diamanten vorliegt.
 - Mehr als 40 Merkmale zeichnen einen Diamanten aus.
 - + Informationen über dem Besitzer

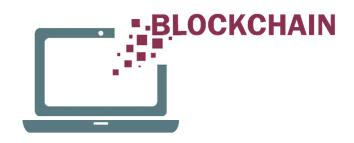
Ablauf und Zahlen

- Wird ein Diamant von Person A an Person B verkauft, wird an die BlockChain einfach ein neuer Block gehängt mit den Informationen von Diamant X, nur dass als Besitzer Person B eingetragen ist.
- Ca. 800.000 Diamanten wurden bereits eingetragen.

BlockChain-Technologie

→ Inhalt

- Übersicht
 (Sichtweisen, Sicherheitseigenschaften, ...)
- Anwendungssicherheit
 (Schlüsselspeicherung, Manipulation, ...)
- Blockchain Beispielanwendungen
 (Bitcoin, Smart Contracts, automatisierte Zusammenarbeit, ...)


Zusammenfassung (Chancen und Risiken)

BlockChain

→ Zusammenfassung

- BlockChain-Anwendungen (Chancen)
 - Die IT-Marktführer aus den USA bieten eher zentrale Dienste an
 - Für DE und EU mit sehr vielen KMUs eine ideale Technologie für eine vertrauenswürdige verteilte Zusammenarbeit.
 - Vertrauensdienste spielen eine immer wichtigere Rolle in der Zukunft!
 - Die BlockChain-Technologie schafft eine Basis für eine verteilte und vertrauenswürdige Zusammenarbeit und stellt damit ein hohes Potential für neue Geschäftsmodelle und Ökosysteme dar.
- Herausforderungen (Risiken)
 - Die BlockChain-Infrastruktur hat komplexe Kommunikations-, Sicherheits- und Vertrauenswürdigkeitsfunktionen, die im Einklang zueinander die notwendigen Sicherheits- und Vertrauenseigenschaften erbringen müssen.
 - Die BlockChain-Anwendungen ist dem "realen Leben" ausgesetzt und muss für die sicher Speicherung und Nutzung der Schlüssel sowie für eine manipulationsfreie Laufzeitumgebung sorgen.

University of Applied Sciences

BlockChain-Technologie Sicherheit und Anwendungen

Mit BlockChain in die Zukunft!

Prof. Dr. (TU NN) **Norbert Pohlmann**

Institut für Internet-Sicherheit – if(is) Westfälische Hochschule, Gelsenkirchen http://www.internet-sicherheit.de

Norbert Pohlmann, Institut für Internet-Sicherheit - if(is), Westfälische Hochschule, Gelsenkirchen

Anhang / Credits

Wir empfehlen

Kostenlose App securityNews

7. Sinn im Internet (Cyberschutzraum)

https://www.youtube.com/channel/UCEMkHjW9dHcWfek En3xhjg

 Cybärcast – Der IT-Sicherheit Podcast https://podcast.internet-sicherheit.de/

SCHUTZRAUM

Master Internet-Sicherheit
 https://it-sicherheit.de/master-studieren/

Quellen Bildmaterial

Eingebettete Piktogramme:

• Institut für Internet-Sicherheit – if(is)

Besuchen und abonnieren Sie uns :-)

WWW

https://www.internet-sicherheit.de

Facebook

https://www.facebook.com/Internet.Sicherheit.ifis

Twitter

https://twitter.com/ ifis

Google+

https://plus.google.com/107690471983651262369/posts

YouTube

https://www.youtube.com/user/InternetSicherheitDE/

Prof. Norbert Pohlmann

https://norbert-pohlmann.com/

Der Marktplatz IT-Sicherheit

(IT-Sicherheits-) Anbieter, Lösungen, Jobs, Veranstaltungen und Hilfestellungen (Ratgeber, IT-Sicherheitstipps, Glossar, u.v.m.) leicht & einfach finden. https://www.it-sicherheit.de/

Literatur

Artikel:

C. Kammler, N. Pohlmann: "Kryptografie wird Währung – Bitcoin: Geldverkehr ohne Banken", IT-Sicherheit – Management und Praxis, DATAKONTEXT-Fachverlag, 6/2013

https://norbert-pohlmann.com/app/uploads/2015/08/308-Kryptografie-wird-W%C3%A4hrung-Bitcoin-Geldverkehr-ohne-Banken-Prof-Norbert-Pohlmann.pdf

R. Palkovits, N. Pohlmann, I. Schwedt: "Blockchain-Technologie revolutioniert das digitale Business: Vertrauenswürdige Zusammenarbeit ohne zentrale Instanz", IT-Sicherheit – Fachmagazin für Informationssicherheit und Compliance, DATAKONTEXT-Fachverlag, 2/2017

https://norbert-pohlmann.com/app/uploads/2017/07/357-Blockchain-Technologie-revolutioniert-das-digitale-Business-Vertrauensw%C3%BCrdige-Zusammenarbeit-ohne-zentrale-Instanz-Prof.-Norbert-Pohlmann.pdf