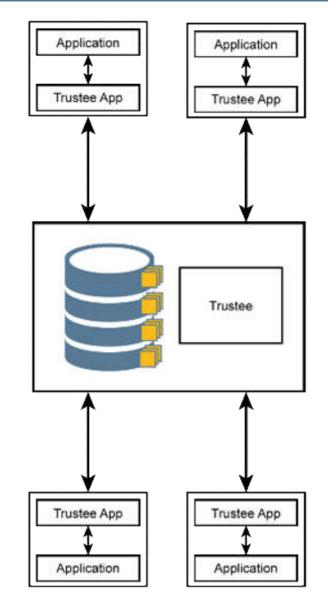


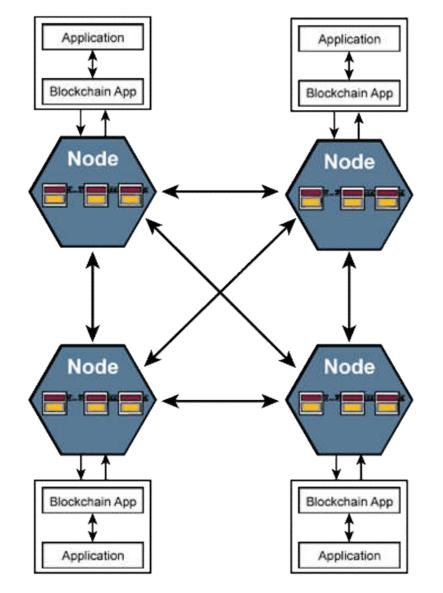
Westfälische Hochschule

Gelsenkirchen Bocholt Recklinghausen University of Applied Sciences

Blockchain Security


Prof. Dr. (TU NN) Norbert Pohlmann

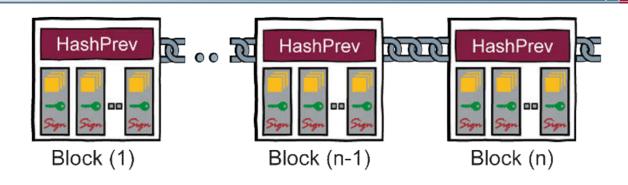
Institute for Internet Security - if(is) University of Applied Sciences Gelsenkirchen http://www.internet-sicherheit.de



BlockChain-Technology → in a nutshell

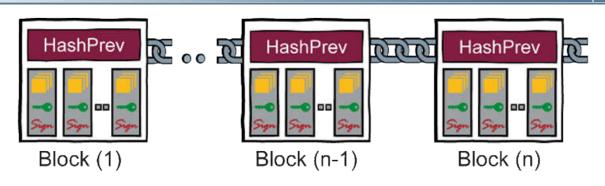
Centralized Architecture

Decentralized Architecture

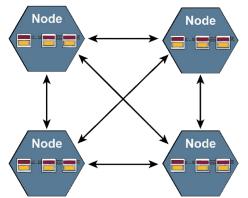

BlockChain Concept → Different perspectives

- For a computer scientist, the BlockChain is a simple data structure, the data chained as "blocks" and redundantly managed in a distributed network by nodes.
 - The alternative could be a conventional database, which is continuously replicated by all participants.
 - For the **IT security experts**, the **BlockChain** has the advantage that the **data** can be stored in individual "blocks" **tamper-proof**, which means that the participants in the **BlockChain** will be able to check
 - \rightarrow the authenticity,
 - \rightarrow the origin and
 - \rightarrow the integrity of the stored data.
 - The alternative could be a PKI system.
- For the application designer, using BlockChain technology means trusted and automated collaboration between different organizations.
 The alternative could be a costly trustee.

BlockChain-Technology → als ein Collaboration-Tool



BlockChain


- is a **tamper-proof**,
- distributed, redundant data structure
- in which transactions are logged in chronological order
- **traceable**, **unmodifiable** and
- offers trust without a central entity.

BlockChain-Technology → Data structure of the Blockchain

- The data can be coins, certificates, sensor data, source code, ... or more generally: any kind of digital assets
- Transactions with the data are created and signed by the BlockChain participants. The matching public key is also stored in the transactions
- A block combines several transactions that are hashed together. The hash value HashPrev ensures block chaining Node
- The BlockChain contains all blocks (data). On each node of the corresponding peer-to-peer network, a version of the BlockChain is stored

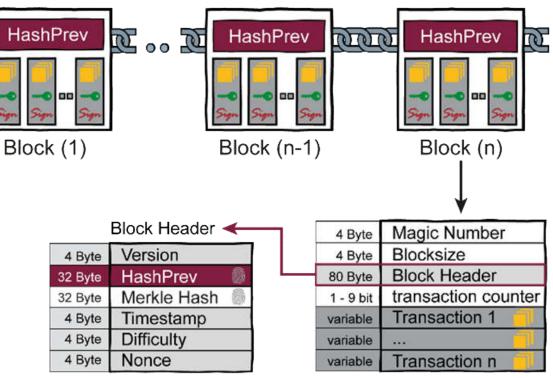
BlockChain-Technology → Property: tamper-proof/unmodifiable

- Transactions are signed with the help of the digital signature by the BlockChain participants
- Transactions are hashed together in a block and the hash value HashPrev ensures block chaining for the BlockChain
- For this property we need a crypto agility
 - We have to use always "State of the Art" crypto (Technical Guideline: "Cryptographic Methods: Recommendations and Key Lengths")
 - Public-key method (RSA 3.000 bit)
 - Hash functions (SHA-3 256 bit)
 - Quantum Computing Risk → Post-Quantum Crypto method
 - Important question: Lifetime of the BlockChain / cryptography
 - Switching cryptographic methods (for example every 10 years organizing a hard fork)

BlockChain-Technology → Property: distributed/redundant

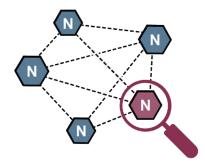
- On each node of the corresponding peer-to-peer network, a version of the BlockChain is stored
- For this property we need a robust peer-to-peer network
 - Scalability / resource requirements
 - Bandwidth between the nodes
 - Storage capacity on the node (bitcoin BlockChain has a size of more than 160 G byte)
 - Computer (CPU, RAM, ...) capacity of a node
 - ...

Reliability / Availability


- Necessary number of nodes
- Robust distribution function for transactions and new blocks
- Robust against DDoS attacks

BlockChain-Technology → Property: logged in chronological order

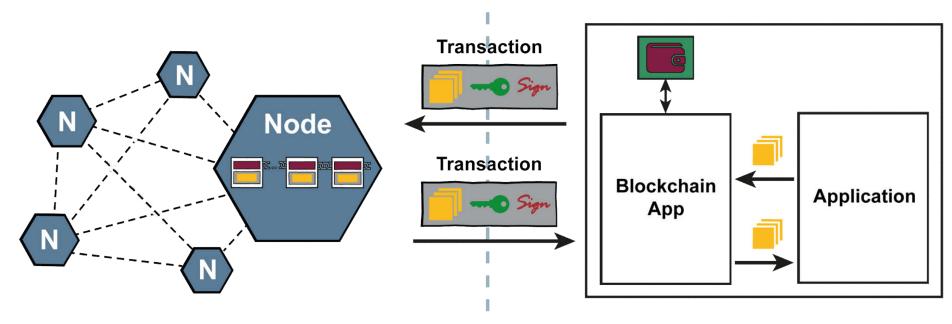
For this property we need additionally


- A clever use of the hash functions (transactions, block chaining)
- distributed trust services

$HashPrev_n = H (Block-Header_{n-1})$

BlockChain-Technology → Property: trused without a central entity internet security.

- The BlockChain technology provides "programmed trust" with the various IT security and trust mechanisms.
- All IT security and trust features are inherently integrated as security-by-design in the BlockChain technology.
- For this property we need distributed trust services
 - The right design for a suitable BlockChain architecture with appropriate "Distributed Consensus" and distributed validation mechanisms
 - Distributed Consensus:
 - (Distributed) Validation:
 - BlockChain architecture:

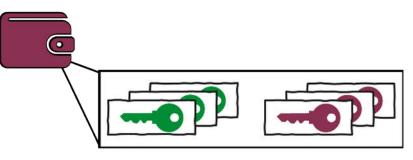

Proof-of-Work, Proof-of-Stake, ...

Hash, signature, syntax, semantic, ... public, private, ...

permissionless, permissioned, ...

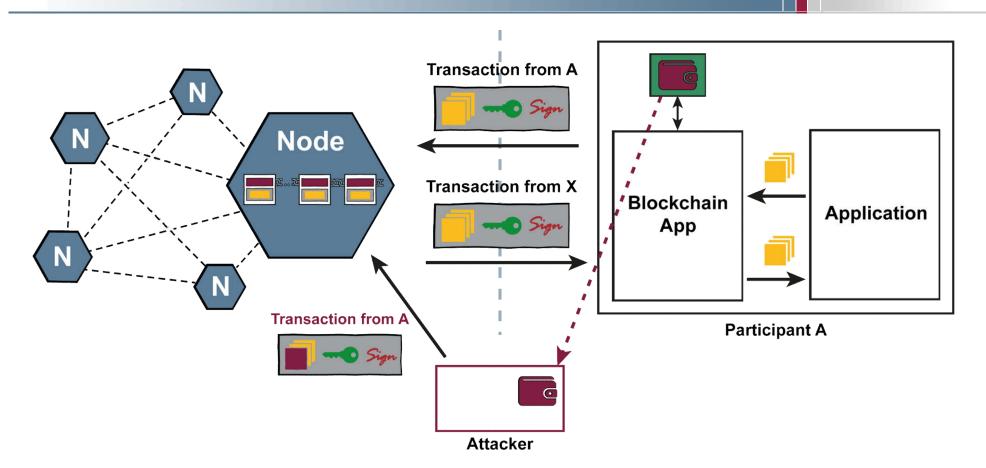
BlockChain-Technology → Infrastructure and Application

BlockChain Infrastructure


BlockChain Application

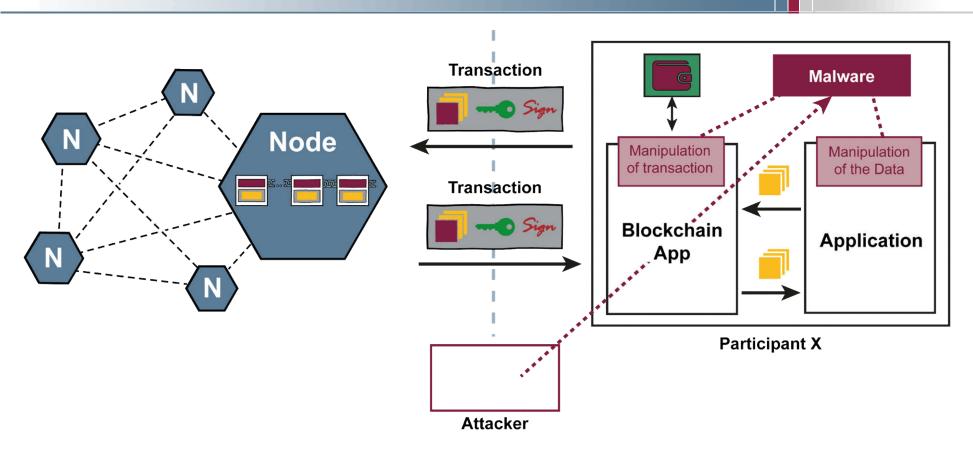
- The BlockChain Infrastructure (peer-to-peer network, Nodes with all communication, security and trust functions, the data structure BlockChain, ...)
- The BlockChain Application (Blockchain App, wallet / keys / security module, Application, ...)
 - The transactions as an interface in between infrastructure and application

BlockChain-Application → Security of the keys


 The security of the BlockChain technology also depends on the secrecy of the private keys of the public-key method (Wallet).

- Dangers of inadequate protection of the private key
 - The private computer / IoT device is hacked (malware)
 - The website of the Online Wallet (Service Node) is hacked
 - An insufficiently secured smartphone is stolen (Light Node)
 - The private key is stolen or is used without authorization
- The protection of the private key should be realized with the help of **hardware security modules** (smart cards, security tokens, high-level security modules) and unauthorized use must be actively prevented!

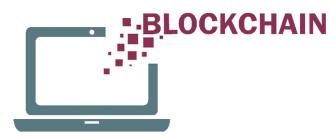
BlockChain-Application → Manipulation of transaction



- The attacker "owns" the wallet/key or can "use it without authorization"
 - This allows the attacker to create valid transactions for the corresponding participant A and manipulate the BlockChain application

BlockChain-Application → Manipulation of the data

- The attacker "runs" malware on the participant's IT system
 - This allows the attacker to manipulate the data of the BlockChain application
 - Both, outgoing and incoming transactions
 - The transactions are securely stored in the BlockChain


Blockchain Security → Summary

- We need a robust peer-to-peer network
 - Adequate resources, robust distribution function, ...
- We need a crypto agility
 - Only use of "State of the Art" crypto, concept for switching crypto, ...

We need distributed trust services

- Appropriate BlockChain architecture, distributed consensus, distributed validation mechanisms, ...
- We must protect the Wallet against theft and unauthorized use
 - hardware security modules, unauthorized use prevention, ...
- We need to protect the BlockChain applications for malware attack
 Trusted Computing, Sandboxing, ...

Westfälische Hochschule

Gelsenkirchen Bocholt Recklinghausen University of Applied Sciences

Blockchain Security

With secure BlockChain into the future!

Prof. Dr. (TU NN) Norbert Pohlmann

Institute for Internet Security - if(is) University of Applied Sciences Gelsenkirchen http://www.internet-sicherheit.de

